SYNTHETIC MINOR INSTALLATION PERMIT APPLICATION

ALLIED METAL COMPANY CHATTANOOGA, TN

MARCH 2023

SUBMITTED BY:

Allied Metal Company Chattanooga Facility 3440 Lightfoot Mill Road Chattanooga, TN 37406 SUBMITTED TO:

Chattanooga-Hamilton County
Air Pollution Control Bureau
6125 Preservation Drive #140
Chattanooga, TN 37416-3740

RECEIVED CHATT / HAMILTON CO.

MAR 1 3 2023

AIR POLLUTION CONTROL BUREAU

TABLE OF CONTENTS

Se	Section Name Page			
1.	INT		CTION	
	1.1	APPL	ICATION ORGANIZATION	1-1
2.	FAC	CILITY	AND PROJECT DESCRIPTION	2-1
	2.1	FACI	LITY LOCATION	2-1
	2.2	REGU	JLATORY JURISDICTION	2-1
	2.3	FACI	LITY PROCESS DESCRIPTION	2-3
	2.4	PROJ	ECT DESCRIPTION	2-3
3.	PRO	JECT	EMISSIONS INVENTORY	3-1
	3.1	REVE	RBERATORY AND ROTARY FURNACES	3-1
	3.2	FUGI	TIVE EMISSIONS	3-2
	3.3	EME	RGENCY ENGINE	3-2
	3.4	FACI	LITY-WIDE POTENTIAL EMISSIONS	3-2
4.	REC	GULAT	ORY ANALYSIS	4-1
	4.1	FEDE	RAL REGULATIONS	4-1
		4.1.1	New Source Review	4-1
		4.1.2	Title V Permitting Program	
		4.1.3 4.1.4	Standards of Performance for New Stationary Sources at 40 CF National Emission Standards for Hazardous Air Pollutants at 40	
		4.1.4	61 and 63	
	4.2	40 CF	R PART 68 CHEMICAL ACCIDENT PREVENTION	
	4.3		TANOOGA-HAMILTON COUNTY REGULATIONS	
		4.3.1	Rule 2 – Nitrogen Oxides	4-10
		4.3.2	Rule 3 – Visible Emissions	4-11
		4.3.3	Rule 9 – Visible Emissions from Internal Combustion Engines	
		4.3.4	Rule 10 – Process Emissions Regulations	
		4.3.5	Rule 26 – Reasonably Available Control Technology	
		4.3.6	Rule 27 – Particulate Matter Controls for New Sources and New Modifications After Assessed 20, 1005	· ·
		4.3.7	Modifications After August 29, 1995	
		T.J.1	The Analyte Moderning	

LIST OF TABLES

Table 4-1 40 CFR Part 60, Subpart IIII Requirements	4-4
Table 4-2 Applicable Requirements for the Reverberatory Furnace and Rotary Furnace	4-7

LIST	OF	FIGURES	
------	-----------	----------------	--

Figure 2-1 Facility Location Map	2-2	2
----------------------------------	-----	---

LIST OF APPENDICES

Appendix A – Process Flow Diagram

 $Appendix \ B-Application \ Forms$

 $Appendix \ C-Facility-Wide \ Potential \ Emissions \ Calculations$

1. INTRODUCTION

Allied Metal Company (Allied Metal) owns and operates the Chattanooga zinc alloy manufacturing facility (Chattanooga facility or Facility) in Chattanooga, Hamilton County, Tennessee. The Chattanooga facility is an existing synthetic minor stationary source of air emissions and operates under Certificate of Operation No. 4400-30400803-02C for Three Sweating Furnaces and No. 4400-30400803-03C for Four Melting Furnaces issued by the Chattanooga-Hamilton County Air Pollution Control Bureau (APCB) with each effective through October 30, 2023.

The APCB requires an installation permit be obtained prior to construction, installation, or beginning any modification, alteration or reconstruction of any fuel-burning, refuse-burning, process or air pollution control equipment unless exempt under the Chattanooga, Tennessee Code of Ordinances, Chapter 4, Air Pollution, Section 4-56(c)(11), 4-56(c)(12). Per Section 4-8, Allied Metal is submitting a complete Installation Permit application to add a secondary aluminum manufacturing line to the existing Facility. The proposed new emissions sources will include one new reverberatory furnace, one new rotary furnace, and one new diesel-fired emergency generator as well as associated fugitive emissions from roads and dross handling.

1.1 APPLICATION ORGANIZATION

This application is organized in a report format and includes the following sections and appendices:

- Section 1 Introduction and Application Organization: provides general information regarding the Facility and an overview of the application.
- Section 2 Facility and Project Description: provides details about the Facility and the proposed project description.
- Section 3 Project Emissions Inventory: provides an emissions inventory of the
 proposed project and the emissions calculation methodologies and assumptions used to
 determine Title V and PSD applicability.

Allied Metal Company - Chattanooga, TN Facility Synthetic Minor Installation Permit Application

- Section 4 Applicable Requirements: summarizes Federal and APCB air quality rules potentially applicable to the Facility due to the proposed project. It includes a discussion of the applicability or non-applicability of each rule identified.
- Appendix A Process Flow Diagram: contains a process flow diagram of the Facility's operations.
- Appendix B Application Forms: contains the APCB forms.
- Appendix C Facility-wide Potential Emissions: contains supporting documentation tables for the calculation of the Facility's post project potential to emit (PTE).

2. FACILITY AND PROJECT DESCRIPTION

This section of the application provides a brief overview of the Facility's current configuration and operations. A detailed description of the proposed project is also included.

2.1 FACILITY LOCATION

The Facility is located in Chattanooga (Hamilton County), Tennessee. A U.S. Geological Survey (USGS) 1:24,000 scale topographical map is shown in Figure 2-1, with the Facility location highlighted. The geographic coordinates for the Facility are:

•	Universal Transverse Mercator (UTM) Easting:	662,235 meters (m)
•	UTM Northing:	3,882,086 m

•	UTM Zone:	16
•	North American Datum (NAD):	1983

•	Longitude (degrees, minutes, seconds):	85° 13' 14.63" W
•	Latitude (degrees, minutes, seconds):	35° 04' 6.55" N

The Facility is located in the Chattanooga Interstate Air Quality Control Region (AQCR) (40 CFR §81.42). Within this AQCR, Hamilton County is in attainment or unclassifiable/attainment for all criteria pollutants except for TSP in the portion of Hamilton County within approximately the city limits of Chattanooga, 40 CFR §81.343. The Allied Metal Facility is located within the Chattanooga City limits.

2.2 REGULATORY JURISDICTION

The Facility is under the jurisdiction of the following State and Federal agencies:

Chattanooga-Hamilton County Air Pollution Control Bureau 6125 Preservation Drive #140 Chattanooga, TN 37416 U.S. Environmental Protection Agency (U.S. EPA) Region 4 Sam Nunn Atlanta Federal Center 61 Forsyth Street, SW Atlanta, GA 30303

2.3 FACILITY PROCESS DESCRIPTION

The Chattanooga Facility is located at 3440 Lightfoot Mill Road, Chattanooga, Hamilton County, Tennessee. The Facility currently manufactures zinc alloy and is categorized under the Standard Industrial Classification (SIC) code 3341 and North American Industry Classification System (NAICS) code 331492 for Secondary Smelting, Refining, and Alloying of Nonferrous Metal (except Copper and Aluminum).

Allied Metal produces zinc alloys from both primary and secondary metals. The zinc can be alloyed with up to 12% aluminum by weight and with lesser amounts of nickel, copper, and/or magnesium. Any secondary metal that is used is new scrap such as rejected die castings and casting trim material. This scrap metal is generally clean, although it may possess a coating of some type. No flux is used in the current alloying process. The zinc alloys are shipped out in the form of either ingots or large blocks that are referred to as sows.

With this application, Allied Metal proposes to construct a secondary aluminum manufacturing line. Secondary Smelting and Alloying of Aluminum is classified under NAICS code 331314 and SIC code 3341. Allied Metal intends to remove two of the three existing zinc sweating furnaces.

2.4 PROJECT DESCRIPTION

reverberatory & rotary furnaces

The proposed new equipment will recycle aluminum shred, bales, and chips to produce aluminum sows and ingots. The proposed production line will have the potential capacity to produce 49,750 tons per year (tpy), or 12,563 pounds per hour (lb/hr). A process flow diagram is included in Appendix A.

Previous: 50,500 tons/yr -> 12,753 1b/hr @ 7,920 hr/yr (330 days/yr)

Aluminum scrap will be received in shred, bales, and chips. There will be no pretreatment, drying, or sizing/crushing operations prior to the smelting and refining process units. The scrap will be processed as received and may be clean or dirty charge containing paint, coatings, and/or lubricants.

The smelting and refining process will take place in the natural gas-fired Reverberatory Furnace (Proposed Emissions Unit No. 001) and in the natural gas-fired Rotary Furnace (Proposed Emissions Unit No. 002). Aluminum scrap will be charged into the sidewell of the Reverberatory

furnace. Salt fluxes and alloying elements will be added to the sidewell by a front-end loader to remove impurities and to adjust metallurgical content. The sidewell will exhaust to a baghouse (Proposed Control Device ID FF2). Lime will be injected at the inlet of the baghouse to control HAP emissions. The hearth (combustion zone) of the furnace will exhaust directly to atmosphere and will be separated from the sidewell by a partition. The Reverberatory Furnace will be heated on the hearth side by a 28 million British thermal unit per hour (MMBtu/hr) natural gas-fired burner. The Facility will use solid fluxing and a chlorine gas demagging process to reduce the magnesium content of the molten charge to the product specification.

Aluminum dross (solid floating impurities) will be removed from the molten aluminum by a skimming process. The dross will be transferred to iron containers to solidify and then be stored in a pile prior to transfer by front-end loader to a semi-truck for shipment offsite.

The proposed natural gas-fired Rotary Furnace (Proposed Emission Unit No. 002) will be used to reclaim low-grade aluminum scrap into aluminum. The Rotary Furnace will operate by rotating the charge through the furnace to come in direct contact with a gas burner or with a refractory wall that will be directly heated by the burner. The Rotary Furnace will exhaust to a new baghouse which will also utilize lime injection to reduce HAP emissions. The Rotary Furnace will be heated by a 12 MMBtu/hr natural gas-fired burner. There will be no chlorine gas demagging in the Rotary Furnace. A salt flux may be charged to improve metal recovery and reduce aluminum oxidation, also referred to as cover flux.

Ancillary operations will include a diesel-fired emergency engine and fugitive particulate emissions from roadways. The diesel-fired emergency engine will be 250 kilowatt (kw) [330 horsepower (HP)]. ~ 2.5 MMBtu/hr < 5.0 MMBtu/hr

3. PROJECT EMISSIONS INVENTORY

The following sections discuss the approach for quantifying potential emissions from the proposed project.

3.1 REVERBERATORY AND ROTARY FURNACES

Emissions from the Reverberatory Furnace and Rotary Furnace result from natural gas combustion and the refining and smelting process. Combustion by-product emissions are based on the U.S. EPA's AP-42, Section 1.4 for Natural Gas Combustion. The Reverberatory Furnace burner is rated at a maximum capacity of 28 MMBtu/hr. The Rotary Furnace burner is rated at a maximum capacity of 12 MMBtu/hr.

Process emissions of filterable particulate matter (PM), filterable particulate matter less than 10 microns and condensable PM (Total PM₁₀), and filterable particulate matter less than 2.5 microns and condensable PM (Total PM_{2.5}), dioxin and furan (D/F), hydrogen chloride (HCl), chlorine, and hydrogen fluoride (HF) are expected from the refining/smelting process. PM, Total PM₁₀ (filterable), and Total PM_{2.5} (filterable) emissions are based on the U.S. EPA's AP-42, Section 12.8 for Secondary Aluminum Operations. Condensable particulate emissions can vary and there is no established condensable PM emissions factor for secondary aluminum operations. To be conservative, Allied has assumed a condensable PM emissions factor of 50% of the uncontrolled filterable particulate. Each furnace is exhausted to a baghouse with lime injection to control filterable particulate matter emissions. D/F emissions are calculated using the applicable emissions limit in 40 CFR §63.1505(i)(4). HF and HCl emissions are also calculated based on 40 CFR §63.1505(i)(4) limits as conservative engineering estimates; HF and HCl emissions will not be regulated under 40 CFR §63.1505. Chorine emissions are also based on an engineering estimate.

Combustion-related emissions include carbon monoxide (CO), nitrogen oxides (NO_X), PM/PM₁₀/PM_{2.5}, sulfur dioxide (SO₂), volatile organic compounds (VOC), lead, and greenhouse gases (GHG). Emissions factors for natural gas combustion are from U.S. EPA's AP-42, Section 1.4.

Process and combustion emissions from the reverberatory and rotary furnaces are found in Attachment C, Table C-2, Table C-3, and Table C-4 of this application.

3.2 FUGITIVE EMISSIONS

Fugitive PM/PM₁₀/PM_{2.5} emissions will be generated from both dross handling and truck traffic on Facility roadways. All Facility roadways are paved. Emissions are calculated using U.S. EPA's AP-42, Section 13.2 and are shown in Attachment C, Table C-5 and C-6 of this application.

3.3 EMERGENCY ENGINE

Allied Metal proposes to install a 250 kw (330 HP) diesel-fired (compression ignition) generator set to provide emergency power during power outages. Potential emissions are calculated using U.S. EPA's AP-42, Section 3.3 and are shown in Attachment C, Table C-7 of this application.

3.4 FACILITY-WIDE POTENTIAL EMISSIONS

Attachment C, Table C-1 of this application summarizes post-project Facility-wide potential emissions, accounting for existing sources (with the removal of two of the three existing sweat furnaces), the new reverberatory furnace, rotary furnace, emergency engine, and fugitive emissions. The PTE calculations confirm that the Chattanooga facility remains a synthetic minor source of all criteria pollutants (relative to the 100 tpy major source threshold for each) and an area source for total hazardous air pollutants (HAP) and any individual HAP below the applicable major source thresholds of 25 tpy and 10 tpy, respectively.

4. REGULATORY ANALYSIS

This section summarizes Allied Metal's review of Federal and Chattanooga-Hamilton County air quality regulations potentially applicable as a result of the proposed project.

4.1 FEDERAL REGULATIONS

Potentially applicable Federal regulations include New Source Review (NSR), Standards of Performance for New Stationary Sources (NSPS) in 40 Code of Federal Regulations (CFR) Part 60, and National Emission Standards for Hazardous Air Pollutants (NESHAP) in 40 CFR Parts 61 and 63. These requirements are codified in the Chattanooga-Hamilton County air quality regulations in Code of Ordinances, Chapter 4, Section 41, Rules 15, 16, and 18.

4.1.1 New Source Review

The NSR program includes both the Nonattainment NSR (NNSR) regulations and Prevention of Significant Deterioration (PSD) regulations. Hamilton County, Tennessee is classified as attainment/unclassifiable for all criteria pollutants. Therefore, the PSD permitting program applies.

The PSD regulations apply to major stationary sources and major modifications at major stationary sources, which are those sources belonging to any one of the 28 source categories listed in the regulations that have the potential to emit more than 100 tpy of any NSR-regulated pollutant, or any other stationary source which has the potential to emit more than 250 tpy of any NSR-regulated pollutant. Secondary metal production facilities are one of the 28 listed source categories defined in 40 CFR §52.21(b). Therefore, the PSD major source threshold is 100 tpy for this facility.

Emissions of NSR-regulated pollutants at the Allied Metal facility are less than 100 tpy. The Facility proposes a federally enforceable limit of less than 100 tpy for PM, PM₁₀, and PM_{2.5} to limit the Facility's PTE to less than the major source threshold with respect to the NSR permitting program. Therefore, PSD and NNSR permitting regulations do not apply.

4.1.2 Title V Permitting Program

The Title V Operating Permit (TVOP) program is codified at 40 CFR Parts 70 and 71. A major source for the TVOP program is:

- Any stationary source or group of stationary sources located within a contiguous area and under common control that emits or has the potential to emit, in the aggregate, 10 tpy or more of any hazardous air pollutant or 25 tpy or more of any combination of such hazardous air pollutants.
- A stationary source of air pollutants that directly emits, or has the potential to emit, 100 tpy or more of any air pollutant subject to regulation.

As discussed in Section 4.1.1, Allied Metal requests a federally enforceable limit of < 100 tpy for PM, PM₁₀, and PM_{2.5}. In addition, as shown in Attachment C, Table C-1, the post project HAP emissions are less than 10 tpy of a single HAP and less than 25 tpy of total HAP. Therefore, the Facility is an area source of HAP and is not subject to Title V permitting.

4.1.3 Standards of Performance for New Stationary Sources at 40 CFR Part 60

NSPS require new, modified, or reconstructed sources in regulated source categories to control emissions to the level achievable by the best-demonstrated technology as specified in the applicable provisions. NSPS are incorporated by reference in the Code of Ordinances, Chapter 4-41, Rule 15. Any source subject to an NSPS is also subject to the general provisions of NSPS Subpart A, unless specifically excluded. The applicability of a particular NSPS can be readily ascertained based on the industrial source category covered. There are no NSPS that apply to the Aluminum Reverberatory Furnace, Rotary Furnace, material handling, or roadways. A review of potentially applicable NSPS is included in the following subsections.

4.1.3.1 40 CFR Part 60, Subpart A

All regulated sources are subject to the general provisions of Part 60 NSPS Subpart A, unless specifically excluded. Subpart A requires initial notification and performance testing, recordkeeping, monitoring, provides reference methods, and mandates general control device requirements for all other subparts as applicable.

4.1.3.2 40 CFR Part 60, Subpart Kb

NSPS Subpart Kb, Standards of Performance for Volatile Organic Liquid Storage Vessels, regulates storage vessels with a capacity greater than 75 cubic meters (m³) (19,813 gallons) that are used to store volatile organic liquids for which construction, reconstruction, or modification is commenced after July 23, 1984.

Allied Metal proposes to operate chlorine storage associated with chlorine demagging in the reverberatory furnace and a diesel storage tank associated with the emergency diesel engine. Chlorine is not a volatile organic liquid. The diesel storage tank is exempt per 40 CFR 60.110b(d)(4). Therefore, this NSPS is not applicable to the storage tanks proposed by the Facility.

4.1.3.3 40 CFR Part 60, Subpart IIII

NSPS Subpart IIII, Standards of Performance for Stationary Compression Ignition Internal Combustion Engines, regulates stationary compression ignition engines (including emergency engines) that commence construction after July 11, 2005.

The proposed project includes one, 250 kW diesel emergency engine. Allied Metal will operate the engine according to manufacturer's written emissions-related instructions. The engine will be subject to the following requirements summarized in Table 4-1. Allied Metal will comply with the requirements of NSPS Subpart IIII by purchasing an engine certified by the manufacturer to meet the emissions standards, installing a non-resettable hour meter on the engine, purchasing fuel that meets the sulfur specifications, and operating and maintaining the engine according to the manufacturer's recommendations.

Table 4-1 40 CFR Part 60, Subpart IIII Requirements

250 kW Certified Emergency Engine	Citation	Applicable Requirements
Emissions Standards	40 CFR §60.4205(b) 40 CFR §60.4202	Emissions standards: NO _X + non-methane hydrocarbons (NMHC) = 4.0 grams per kW-hour (g/kW-hr) CO = 3.5 g/kW-hr PM = 0.2 g/kW-hr Smoke standards: 20% during the acceleration mode. 15% during the lugging mode. 50% during the peaks in either the acceleration or lugging modes.
Fuel Requirements	40 CFR §60.4207(a), (b), (e)	15 parts per million (ppm) sulfur content, and minimum cetane index of 40, or maximum aromatic content of 35 volume percent.
Monitoring	40 CFR §60.4209(a)	Install/operate non-resettable hour meter.
General Compliance	40 CFR §60.4206 40 CFR §60.4211(a), (c), (f), (g)	Operate and maintain engine to comply with emissions standards over life of engine. Operate and maintain engine according to manufacturer
2		according to manufacturer emissions-related written instructions. Operate a maximum of 100 hours per year for maintenance and readiness checks. 50 hours of non-emergency operation is allowed and

Table 4-1
40 CFR Part 60, Subpart IIII Requirements

250 kW Certified Emergency Engine	Citation	Applicable Requirements
		counts towards the total 100 hours per year.
Notifications/Reports/Records	40 CFR §60.4214(b)	Initial notification is not required.
General Conditions	Table 8	Except §60.8, §60.11, §60.13, and §60.18.

4.1.4 National Emission Standards for Hazardous Air Pollutants at 40 CFR Part 61 and 63

NESHAP are emissions standards that apply to major sources of HAP (facilities that meet or exceed the major source thresholds of 10 tpy of a single HAP and/or 25 tpy of any combination of HAP) or specifically designated non-major or area sources. NESHAP are incorporated by reference in the Code of Ordinances, Chapter 4-41, Rule 16. The Facility is considered an area source because the PTE of individual and total HAPs are less than the applicable major source thresholds. The following subsections contain a review of NESHAP potentially applicable to the proposed new emissions sources.

4.1.4.1 40 CFR Part 63, Subpart RRR – NESHAP for Secondary Aluminum Production

40 CFR Part 63, Subpart RRR (Subpart RRR) applies to the owner or operator of each secondary aluminum production facility. The Facility meets the definition of a Secondary Aluminum Production Facility in 40 CFR §63.1503. The Chattanooga facility is an area source of HAP under Part 63 because the Facility's potential HAP emissions are less than 10 tpy of any individual HAP and less than 25 tpy of combined HAP. Specifically, D/F emissions and associated operating, monitoring, reporting, and recordkeeping requirements apply to each of the following new and existing sources located at an area source of HAP, as listed in 40 CFR §63.1500(c)(1)-(4):

Thermal chip dryer;

- Scrap dryer/delaquering kiln/decoating kiln;
- Sweat furnace; and,
- Secondary aluminum processing unit containing one or more group 1 furnace emission units processing other than clean charge.

40 CFR §63.1503 contains the following definitions that apply to this Subpart:

<u>Thermal chip dryer</u> means a device that uses heat to evaporate oil or oil/water mixtures from unpainted/uncoated aluminum chips. Pre-heating boxes or other dryers which are used solely to remove water from aluminum scrap are not considered to be thermal chip dryers for purposes of this subpart.

<u>Scrap dryer/delacquering kiln/decoating kiln</u> means a unit used primarily to remove various organic contaminants such as oil, paint, lacquer, ink, plastic, and/or rubber from aluminum scrap (including used beverage containers) prior to melting, or that separates aluminum foil from paper and plastic in scrap.

<u>Sweat furnace</u> means a furnace used exclusively to reclaim aluminum from scrap that contains substantial quantities of iron by using heat to separate the low-melting point aluminum from the scrap while the higher melting-point iron remains in solid form.

Group 1 furnace means a furnace of any design that melts, holds, or processes aluminum that contains paint, lubricants, coatings, or other foreign materials with or without reactive fluxing, or processes clean charge with reactive fluxing.

The Reverberatory Furnace (Proposed Emission Unit No. 001) and the Rotary Furnace (Proposed Emission Unit No. 002) will each meet the definition of a Group 1 Furnace and may process clean charge or other scrap aluminum containing paint, lubricants, coatings or other foreign materials with reactive fluxing. Therefore, the Reverberatory Furnace and Rotary Furnace meet the affected source description in 40 CFR §63.1500(c)(4) at a secondary aluminum production facility that is an area source of HAP. The furnaces will be subject to the D/F emissions standards and associated

operating, monitoring, reporting, and recordkeeping requirements, which are the only standards in the NESHAP applicable to area sources. Note that per 40 CFR §63.1505(k)(5), Allied Metal may demonstrate compliance with the emissions limitations associated with a Secondary Aluminum Processing Unit (SAPU) at 40 CFR §63.1505(k)(3) by complying with the emissions limitations under 40 CFR §63.1505(i)(3). Table 4-2 outlines the requirements of this Subpart applicable to the Reverberatory Furnace and Rotary Furnace.

Table 4-2
Applicable Requirements for the Reverberatory Furnace and Rotary Furnace

	Citation	Applicable Requirements
Emissions Standards	40 CFR §63.1505(i)(3)	2.1 x 10 ⁻⁴ gr of D/F TEQ per ton of aluminum processed.
Operating Requirements	40 CFR §63.1506(a), (b), (c), (d), (m) and (p).	Post labels at the Group 1 furnace per paragraph (b). Design/Install/Operate capture/collection system according to American Conference of Governmental Industrial Hygienists (ACGIH) Guidelines and operational, maintenance and monitoring (OM&M) plan per paragraph (c). Measure feed/charge weight or production rate per paragraph (d). Operate a bag leak detection system per paragraphs (m)(1), (3)-(7). Initiate corrective actions to operating parameter deviations per paragraph (p).

[&]quot;While the emissions standards that apply to area sources are evident in the current rule, the applicable operating, monitoring, and recordkeeping and reporting requirements are less clear. *In general, the intent of the rule is to subject area sources to standards for D/F with corresponding monitoring, testing, reporting, and recordkeeping.* We are proposing amendments that would clarify which of the operating, monitoring and other requirements apply to area sources." Environmental Protection Agency; 40 CFR Part 63, Subpart RRR; Preamble to Proposed Rule; 77 Federal Register 8605, February 14, 2012.

Table 4-2 Applicable Requirements for the Reverberatory Furnace and Rotary Furnace

	Citation	Applicable Requirements
Monitoring Requirements	40 CFR §63.1510(a), (b)-(f), (h)-(j), (n), and (s)-(u).	OM&M plan per paragraph (b). Labeling requirements per paragraph (c). Requirements for capture and collection described in paragraph (d). The feed/charge weight monitoring requirements described in paragraph (e). The bag leak detection system requirements described in paragraph (f). Fabric filter inlet temperature monitoring described in paragraph (h). Total reactive flux injection monitoring described in paragraph (j). Monitor molten metal level per paragraph (n). OM&M plan contents per paragraph (s). Calculate rolling average emissions of D/F per paragraph (t) or conduct D/F performance testing per paragraph (u).
Performance Tests/Compliance Demonstration Requirements	40 CFR §63.1511(b) 40 CFR §63.1512(d), (j), (k), (n)-(s)	Prepare a site-specific test plan and complete the performance tests pertaining to D/F.
Notifications/Reporting Requirements	40 CFR §63.1515(a), (b) 40 CFR §63.1516(b)	Submit initial notifications including intent to conduct performance testing at least 60 days prior testing. Submit notification of compliance status (NOCS) within 90 days after conducting performance testing. Submit semiannual compliance reports.

Table 4-2 Applicable Requirements for the Reverberatory Furnace and Rotary Furnace

	Citation	Applicable Requirements
Recordkeeping Requirements	40 CFR §63.1517	Maintain records for Group 1 furnaces with bag leak detection system per this section.

4.1.4.2 40 CFR Part 63, Subpart ZZZZ – NESHAP for Stationary Reciprocating Internal Combustion Engines

40 CFR Part 63, Subpart ZZZZ, NESHAP for Stationary Reciprocating Internal Combustion Engines (RICE), regulates HAP emissions from RICE located at major and area sources of HAP. One, new 330 HP emergency diesel-fired engine is proposed with this application. The Facility will remain an area source of HAP following the proposed project. As such, the engine will comply with this subpart by complying with 40 CFR Part 60, Subpart IIII per 40 CFR §63.6590(c)(1).

4.2 40 CFR PART 68 CHEMICAL ACCIDENT PREVENTION

Table 1 of 40 CFR §68.130 lists threshold quantities for accidental release prevention. The Facility will maintain chlorine storage onsite of more than the listed threshold quantity of 2,500 pounds. As such, the provisions of Part 68 apply. Allied Metal will develop and submit a Risk Management Plan prior to the date on which chlorine is present above the threshold quantity.

4.3 CHATTANOOGA-HAMILTON COUNTY REGULATIONS

For the purpose of this Installation permit application, potentially applicable Chattanooga-Hamilton County Air Pollution Control Regulations listed in Article II, Section 4-41 include the following:

- Rule 2 Nitrogen Oxides
- Rule 3 Visible Emissions
- Rule 9 Internal Combustion Engine Visible Emissions
- Rule 10 Process Emissions
- Rule 12 Odors
- Rule 13 Sulfur Oxides
- Rule 15 NSPS
- Rule 16 NESHAPS and MACT
- Rule 18 PSD

- Rule 19 Lead
- Rule 25 VOC (New: LAER or BACT)
- Rule 26 Particulate Matter RACT (Hamilton County Only)
- Rule 27 Particulate Matter BACT

A discussion of each potentially applicable air quality regulation is provided in the following subsections.

4.3.1 Rule 2 – Nitrogen Oxides

Rule 2.1 establishes nitrogen oxide emissions limits for fuel-burning equipment with a design capacity of greater than 250 MMBtu/hr built or installed on or after January 1, 1973. Fuel-burning equipment is defined as follows:

Fuel burning equipment: Any equipment, device or contrivance used for the burning of any fuel, except refuse) and all appurtenances thereto, including ducts, breechings, fly ash collecting equipment, fuel feeding equipment, ash removal equipment, combustion controls, stacks, chimneys, etc., used for indirect heating in which the material being heated is not contacted by and adds no substance to the products of combustion. Such equipment includes, but is not limited to, that used for heating water to boiling; raising steam or superheating steam; heating air as in warm air furnaces; furnishing process heat that is conducted through process vessel walls; and furnishing process heat indirectly through its transfer by fluids.

The Reverberatory Furnace and Rotary Furnace will not meet the definition of fuel burning equipment because the furnaces operate direct-fired burners. Furthermore, the design capacity of each burner is well below 250 MMBtu/hr. Therefore, the requirements of Rule 2.1 do not apply.

Rule 2.4 establishes nitrogen oxides emissions limits for emissions sources not elsewhere specified in Rule 2. Emissions of NO_X from the Reverberatory and Rotary Furnaces may not exceed 300 ppm.

Rule 2.7 establishes requirements for emergency generators. For the purposes of this rule, "emergency generator" is defined as a generator used when loss of primary electrical power occurs

for reasons beyond the control of the source. One emergency generator is proposed with this application. The emergency engine will not emit NO_X in excess of 1,500 ppm, or be operated for a period of time longer than five consecutive days or more than a total of 20 days in any calendar year, except for unforeseeable events beyond Allied Metal's control.

The Facility will maintain a written record of each loss of primary electrical power, including a record of the cause and a record of the duration of the loss. Records will be retained for a period of two years and made available to the director upon request. Start-up of an emergency generator for testing proper functioning is not subject to the recordkeeping requirements.

4.3.2 Rule 3 - Visible Emissions

Rule 3.1 establishes a visible emissions limit of 20% opacity for an aggregate of more than five minutes in any one hour or more than 20 minutes in any 24-hour period from any air emissions source. The Facility will comply with the opacity limit for each emissions source.

4.3.3 Rule 9 – Visible Emissions from Internal Combustion Engines

Rule 9 establishes visible emissions limits from internal combustion engines. Rule 9.2 specifies a limit for air contaminants from a diesel type engine for a period of more than 60 consecutive seconds to no more than 20% opacity. The proposed diesel-fired emergency engine will be subject to this Rule.

4.3.4 Rule 10 – Process Emissions Regulations

The proposed Rotary Furnace has a potential input process weight of 2.27 tph. In accordance with Schedule 2 of Table 2, the maximum allowable PM emissions rate for the Rotary Furnace is 5.97

18,000 tons . 7,920 hr = 2,27273 tons . 2,000 ton = 4,545.5 16/hr

4.3.5 Rule 26 – Reasonably Available Control Technology

Rule 26 establishes reasonably available control technology standards for sources of particulate matter emissions located within the particulate matter nonattainment area or located outside the nonattainment area, but significantly impacting the nonattainment area. This rule applies only to those sources and plants that were in existence on January 1, 1978. As such, Rule 26 is not applicable to the proposed emissions sources because they will be constructed after 1978.

4.3.6 Rule 27 – Particulate Matter Controls for New Sources and New Modifications After August 29, 1995

Rule 27 requires that any new source or modification, alteration or reconstruction of a source which commences after August 29, 1995 that emits or has the potential to emit 15 tpy or more of PM₁₀, or that emits or has the potential to emit 25 tons per year or more of PM utilize "particulate matter best available control technology" (particulate BACT), as defined in Rule 27.2. If the PTE is less than 15 tpy PM₁₀ or 25 tpy of PM, the sources shall achieve "reasonable and proper emission limitations" as defined in Rule 27.4.

Filterable particulate emissions from the proposed reverberatory and rotary furnaces will be controlled by high efficiency baghouses with a filterable particulate grain loading of at least 0.01 grains per standard cubic foot (gr/scf). The use of high efficiency baghouses to control filterable particulate emissions from the Reverberatory and Rotary Furnaces constitutes BACT.

4.3.7 Air Quality Modeling

Allied Metal understands that the Chattanooga-Hamilton County APCB may require air quality modeling for specific pollutants associated with the project that have an established ambient air quality standard in TAC 1200-3-3-.03. Upon request of the Chattanooga-Hamilton County APCB, Allied Metal will develop and submit an air modeling protocol, conduct modeling, and submit modeling results to the APCB in accordance with the Tennessee Division of Air Pollution Control Dispersion Modeling Guidance.

02/09/2023

Allied Metal Company – Chattanooga Facility

APPLICATION FOR EQUIPMENT / FEDERALLY ENFORCEABLE CERTIFICATE OF OPERATION FOR SYNTHETIC MINOR SOURCES

FORM F001 03/2011

1.	Name of Company Allied Metal Company	2.	NAICS Code	e: 331492/3	31314
	(If corporation or LLC, name on file with Tennessee Secretary of State Co	rporate Records Division)			
3.	Company Official to Contact: Rickey Harvey	4.	Phone No.	(423) 624-5051	
5.	Mailing Address: 3440 Lightfoot Mill Road	Chattanooga		TN	37408
J.,	Street or P.O. Bo.	x City		State	Zip Code
6.	Physical Location (If different from line 5) N/A				
	Street	City		State	Zip Code
7:2	Application for: Initial Certificate of Operation Renewal Certificate	te of Operation			
	Previous Installation Permit or Certificate of Operation	No.: 4400-30400803-03C / 44	00-30400818-02C	-	-
8.	Type of equipment for which application is made:				
	Process Equipment (Form E010 or Form E010A)	Previously Submitte	d	\boxtimes	Attached
	☐ Fuel Burning Equipment (Form E011)	Previously Submitte	ed		Attached
	☐ Incineration Equipment (Form E012)	Previously Submitte	ed		Attached
	Minor Pollution Source (Form E014) (Less than 1000 lbs/yr and less than 10 lbs/day total uncontrolled co.	Previously Submitte	d		Attached
9.	The following forms are filed with this application: Process Equipment (E010), Process Pollution Estimation (E106), Baghouse (E102) Equipment Name:			11	
	Reverberatory Melting Furnace	- managara			CEIVED
10.	Are there any changes since the previous application in the equ	ipment or operation which	might:		HAMILTON CO
	A. Increase, decrease, or alter process materials, fuel, refuse type	pe, etc.? 🛛 Yes	☐ No		1 3 2023
	B. Increase, decrease, or alter emissions or emission points?	⊠ Yes [No		OLLUTION OL BUREAU
11.	Process Weight, lb/hr, (Item 6 on Form E010), Incineration Rar Rate, 1,000 Btu/hr, (Item 7C on Form E011): 7,248.858 lb/hr (Should be	te, lb/hr, (Item 3C on Form 3. 6244	n E012), or Fu	ucl Burning	
	This is to certify that I am familiar with operations concerning is true and complete to the best of my knowledge:	this equipment and the int	formation prov	vided on this	s application
	Mail completed form to: CHATTANOOGA-HAMILTON COUNTY	Gilbert Escudero	dbert E	cudero	
	AIR POLLUTION CONTROL BUREAU 6125 Preservation Drive, Suite 140 Chattanooga, TN 37416-3638	Plant Manager	Name Title		
		2/24/2023	z inic		
	This form must be completely filled out before it will be processed		Date		

PROCESS EQUIPMENT APPLICATION

FORM E010 07/2000

Equipment Name (as shown on Line 10, Form E001): Reverberatory Melting Furnace					
Installation Date: 20	23	4. <i>Type</i> o	f Process: Secondary Ali	uminun	n Processing
Major Raw Materials	S Used: Scrap A	Aluminum			
Process Weight: 7,2		ght of all materials introd	Poluced into the process.	unds p	er hour
Control Equipment					
Emissions Unco	ntrolled	Į.	Baghouse (File Form	E102)	
☐Wet Collecting D	evice (File For	m E103)	Inertial Separators (Fil	le Forn	n E105)
Electrostatic Pre-	cipitator (File F	form E104)	Other – Specify:		
Control Efficiency					
Enter the control efficiency zeros if the emissions are u	for each pollutant uncontrolled as not	emitted by this equipmeted in Item 7.	ent (for appropriate Forms E10	2, E103,	E104, E105, E107, or enter
	Poll	utant	% Efficiency		RECEIVED
	Particulates		99.9	-	CHATT / HAME TO
	SO _x		0		
	NO _x		0	20	MAR 1 3 2 023
			Λ		
	CO		0	-	
Other:	Hydrocarbor	ns	0	3 3 3	
Other: Emissions Summary		ns		• • • • • • • • • • • • • • • • • • •	
Emissions	Hydrocarbor			•	
Emissions Summary	Hydrocarbor		0 sions Actual Emissions		
Emissions Summary Enter the amount of each p Pollute Total Suspende	Hydrocarbor oollutant listed in pos	ounds per hour.	0 sions Actual Emissions		CONTROL BUREA
Emissions Summary Enter the amount of each p Polluta Total Suspende	Hydrocarbon oollutant listed in posant ant d Particulate 0	ounds per hour. Uncontrolled Emiss (File Form E106	sions Actual Emissions (Stack Test Report)	-	Estimated Emissions (See Formula A)
Emissions Summary Enter the amount of each p Polluta Total Suspende PM1 Sulfur O	Hydrocarbor Hydrocarbor ant d Particulate 0 xides	Uncontrolled Emiss (File Form E106 N/A N/A N/A	sions Actual Emissions (Stack Test Report) N/A N/A N/A		Estimated Emissions (See Formula A) 9.97
Emissions Summary Enter the amount of each p Polluta Total Suspende PM1 Sulfur O Nitrogen Oxide	Hydrocarbor Hydrocarbor ant d Particulate 0 xides es (as NO ₂)	ounds per hour. Uncontrolled Emiss (File Form E106 N/A N/A N/A N/A	sions Actual Emissions (Stack Test Report) N/A N/A N/A N/A N/A	OR	Estimated Emissions (See Formula A) 9.97 13.60 0.016 2.75
Emissions Summary Enter the amount of each p Polluta Total Suspende PM1 Sulfur O Nitrogen Oxide Other (sp	Hydrocarbor Hydrocarbor ant d Particulate 0 xides es (as NO ₂) pecify)	ounds per hour. Uncontrolled Emiss (File Form E106 N/A N/A N/A N/A N/A N/A	sions Actual Emissions (Stack Test Report) N/A N/A N/A N/A N/A N/A	OR	Estimated Emissions (See Formula A) 9.97 13.60 0.016 2.75 N/A
Emissions Summary Enter the amount of each p Polluta Total Suspende PM1 Sulfur O Nitrogen Oxide Other (sp	Hydrocarbor Hydrocarbor ant d Particulate 0 xides es (as NO ₂) pecify)	ounds per hour. Uncontrolled Emiss (File Form E106 N/A N/A N/A N/A N/A N/A N/A N/A	sions Actual Emissions (Stack Test Report) N/A N/A N/A N/A N/A N/A N/A N/A N/A	OR	Estimated Emissions (See Formula A) 9.97 13.60 0.016 2.75 N/A 1.09E-7
Emissions Summary Enter the amount of each p Polluta Total Suspende PM1 Sulfur O Nitrogen Oxide Other (sp	Hydrocarbor ant d Particulate 0 xides es (as NO ₂) becify) furan	ounds per hour. Uncontrolled Emiss (File Form E106 N/A N/A N/A N/A N/A N/A	sions Actual Emissions (Stack Test Report) N/A N/A N/A N/A N/A N/A	OR	(See Formula A) 9.97 13.60 0.016 2.75 N/A

0.	Environmental Impact
	Those emissions indicated in Item 9 may at times under normal operating conditions cause (check all that apply):
	Odors Eye Irritations Property Damage Health Effects
	Other nuisances outside of plant property No environmental damage
	Emission Point Data
	Stack Height (emission point) above ground: Ground Elevation above sea level at stack base: Stack Diameter: TBD Ft. Volume of gas discharged into atmosphere: TBD Ft. Gas exit temperature: TBD Ft.
. [Ave. Operating Time
	Daily: 8,760 hours Weekly: 7 Days Yearly: 52 Weeks
	This is to certify that I am familiar with the operations concerning this equipment and that the information provided on this application is true and complete to the best of my knowledge.
	Gilbert Escudero Schwarz Company Official
	Plant Manager Title
	February 24, 2023

CHATTANOOGA-HAMILTON COUNTY AIR POLLUTION CONTROL BUREAU 6125 Preservation Drive, Suite 140 Chattanooga, TN 37416-3740

AIR POLLUTION CONTROL EQUIPMENT DATA - BAGHOUSE

FORM E102 01/2001

1.	Name of Company: Allied Metal Company As shown on Line 1 of Form E001
2.	Name of Equipment: Reverberatory Melting Furnace As shown on Line 9 of Form E001
3.	Equipment Data: Manufacturer of Baghouse: Wheelabratory-Frye Inc.
	Model Number: TBD Cost of Baghouse: TBD
	Date of Manufacture: TBD Date of Installation: TBD
	Pre-cleaning Equipment No Yes If yes, what type (File appropriate form for control equipment)
	Volume of gas discharged from baghouse at dry standard conditions: 80,000 dscfm
	Total cloth area of baghouse: 50,684 ft ²
	Air to cloth ratio: 1.57 Ft (Divide volume of gas discharged by total cloth area)
4.	Pressure Drop Across Baghouse: RECEIVED CHATE / HAMILTON CO
4.	Pressure Drop Across Baghouse: Stated by manufacturer: 2-6 Inches of H ₂ O
	Measured (actual): 1.77 Inches of H ₂ O MAR 1 3 2023
	Calculated: $3.8 \times 1.57 \times 1.57 \times 1.57 \times 1.59 \times 1.5$
	The recommended pressure drop range in inches of H ₂ O is 1.5 (minimum) to 8.0 (maximum).
	If the measured or calculated pressure drop falls outside the recommended range, contact the Chattanooga-Hamilton County Air Pollution Control Bureau.
5.	Filter Data: Type of fabric filters used in baghouse: 12 OZ PE
	Operating temperature: 180 °F 88.5 °F 240 °F Manufacturer's Normal Maximum Recommended
	If the maximum operating temperature exceeds the recommended operating temperature, contact the Chattanooga-Hamilton County Air Pollution Control Bureau.
6.	Baghouse Components: Check all that apply. Flow rate instrumentation Inlet gas temperature instrumentation Evaporative Cooler Dew point indicator Differential pressure instrumentation Other (Describe) Heat Exchanger
, i	
7.	Baghouse Operation: Continuous Intermittent Page 1 of 3

	Baghouse Description:
	Baghouse Inlet (dirty gas): Bottom Feed Top Feed
	Exterior Filtration Tangential
	Other (Describe):
	Does the baghouse have a wear-resistant plate?
	Baghouse shape: Rectangular Cubical Cylindrical
	Other (Describe):
	Baghouse volume: $\underline{2,768}$ Ft ³
	Baghouse dimensions: 12 Ft 12 Ft 30 Ft $height$
	Length Width height Baghouse shell material: TBD
8.	Pag Cleanings (1, 1, 1)
0.	Bag Cleaning: (check one) Fabric Flexing Reverse Air Cleaning
	Mechanical Shaking & Rapping Reverse Jet
	Sonic Cleaning Reverse Flow
	Collapse Cleaning Manual Cleaning
20	Pulse (pressure) – Jet Cleaning
. 9	
	Filter Configuration:
9.	Panels Multiple Tube Bag
У.	
У.	Panels Multiple Tube Bag
У.	Panels Multiple Tube Bag Circular Cross-Section Tube Other (Describe):
	Panels Multiple Tube Bag Circular Cross-Section Tube Other (Describe): Filter Fabric: Felted Woven Number of Compartments: TBD Filter Area: TBD TBD Ft² Number of Filters per Compartment: TBD
9.	Panels
	Panels
	Panels
	Panels
10.	Panels
10.	Panels
10.	Panels Multiple Tube Bag

2 0							
	trol Efficiency: Aanufacturer's Sta	ted Efficiency	y:	99.9			, 0
R	Required Efficienc	y:		TBD		%	,
C	Operational Efficiency (performance testing): TBD					%	, D
	Size % by weight	0-5μ N/A	5-10μ	10-20μ	20-44μ	Greater than 44	4μ
F	Fan Data: Fan Location: Clean air side (pull through) Dirty air side (push through) Fan Design (check one - A, B, or C):						
F	an Type:		Blade	Туре:			
A B		al (radial flow v (propeller)		ward Curve peller	■ Backwar		aight ne Axial
Fa	an Properties:		_1				
	Diameter: Speed: Volume: Static Pressure: Standard		Inches RPM Cfm (Inches	II STP C SWC M	raking Horsepownlet Area; butlet Area; fotor Horsepower copy of Manufactures g Tables	13 11 200	BHP Ft² Ft² HP
SI	Decial Construction Bronze Allo		Alumin	າແກ	Stainless Sto	eel Bi	isonite
	Zinc Chromate Primer Rubber, Phenolics, Vinyls, or Epoxy Covering						
C,			ositive Displa		Dynamic	Reciprocation	_
This is applied	This is to certify that I am familiar with the operations concerning this equipment and that the information provided on this application is true and complete to the best of my knowledge. This form must be completely filled out before it will be processed. Somework Officials.						
Mail to			Company Of	ficial:		ature	
COUN CONT 6125 P	TANOOGA-HAMILT TY AIR POLLUTION ROL BUREAU reservation Drive 100ga, TN 37416			Title: Plan	t Manager		
):		Date: 2/24			
			Do not writ	e below this lin	e.		
	Engineer Approval	Permit Num	ber:				
Special	Notations:						

POLLUTION ESTIMATION FORM

FORM E106 01/2001

1.	Name of Company:	Allied Metal Company			
		As shown on Line 1 of Form E001			
2.	Equipment Name:	Reverberatory Melting Furnace			
As shown on Line 9 of Form E001					
3.	Type of pollutant for	which estimate is made: Va	arious - See attached emissions calculations		
		-			<u> </u>
4.	Pollution Emission F	Factor (PEF): Various - See at	tached emissions calculations (Give value & units in lbs/ton, lbs/	The the lead on this ato.)	
			(Sire rame & mais in tos/ton, tos/	io, ios/gai, gr/jr , eic.)	
	Source of Emission I	Factor: Various - See attache	d emissions calculations		
	Dougle of Emission 1	detoi.	d cimisions carculations		
1					
5.		•			
- 0	Uncontrolled Pollution	on Emission Rate:			ĺ
			Various - See attached emissions calculation	ons	
		X	=		
	(PEF		perating rate for this equipment	(Give valu	ie & units)
			appropriate units in either	(Otto tute	ie de dints)
		lbs/hr, to	ons/hr, gal/hr, or cfm)		
	la .				I,
6. [
0.	Uncontrolled Emission	Various - S	See attached emissions calculations	~ ·	
	Officulturing Emission	n Raie.		Pounds en	nitted per hour
	This is to certify that I an correct to the best of my ki	a familiar with the operations conce nowledge. This form must be compli	erning this equipment and that the informatetely filled out before it is processed. Company Official:		0000 10
	AIR POLLUTION C				
	6125 Preservation Dr			DI 434	B5057
- 1	Chattanooga, TN 374	16	Title:	Plant Manager	RECEIVED
l,			1		CHATT / HAMILTON CO.
			5 .	2 24 2022	
			Date:	2-24-2023	MAR 1 3 2023
					AIR POLLUTION
		DO NOS	F WDITE DELAW THIS I WE		CONTROL BUREAU
		UUNUI	WRITE BELOW THIS LINE		
	Engineer A	nnroval			
	Linginieer A	pprovai			
This	form corresponds to p	permit number:			
Snec	cial Notations:				
Spec	ini i totatiolis.				

APPLICATION FOR EQUIPMENT / FEDERALLY ENFORCEABLE CERTIFICATE OF OPERATION FOR SYNTHETIC MINOR SOURCES

FORM F001 03/2011

1.	Name of Company Allied Metal Company (If corporation or LLC, name on file with Tennessee Secretary of State Company)	2. Corporate Records Division)	NAICS Co	de: 331492/3	331314
3.			D1	(400) 004 005	
٥.	Company Official to Contact: Rickey Harvey	4.	Phone No.	(423) 624-505	
5.	Mailing Address: 3440 Lightfoot Mill Road	Chattanoog	a	TN	37406
	Street or P.O. Bo	OX City		State	Zip Code
6.	Physical Location (If different from line 5) N/A				
	Street	City		State	Zip Code
7.	Application for: Initial Certificate of Operation Renewal Certificate	ate of Operation			
	Previous Installation Permit or Certificate of Operation	No.: 4400-30400803-030-/4-	100-30400818-02	e-	
8.	Type of equipment for which application is made:				
	Process Equipment (Form E010 or Form E010A)	☐ Previously Submitte	ed	X	Attached
	☐ Fuel Burning Equipment (Form E011)	Previously Submitte	ed		Attached
	☐ Incineration Equipment (Form E012)	Previously Submitte	ed		Attached
	Minor Pollution Source (Form E014) (Less than 1000 lbs/yr and less than 10 lbs/day total uncontrolled con	Previously Submitte	ed		Attached
	The following forms are filed with this application: Process Equipment (E010), Process Pollulion Estimation (E106), Baghouse (E102)				
9.	Equipment Name: Rotary Melling Furnace				EIVED AMILTON CO.
10.	Are there any changes since the previous application in the equ	ipment or operation which	n <u>might</u> :	MAR 1	3 2023
	A. Increase, decrease, or alter process materials, fuel, refuse type	pe, etc.? 🔀 Yes 🛭	☐ No		LLUTION L BUREAU
	B. Increase, decrease, or alter emissions or emission points?	X Yes	No		
11.	Process Weight, lb/hr, (Item 6 on Form E010), Incineration Rat Rate, 1,000 Btu/hr, (Item 7C on Form E011): 4,109.589 lb/hr [Should be]	2.0548 tous/hi	n E012), or Fi	uel Burning	7
	This is to certify that I am familiar with operations concerning t is true and complete to the best of my knowledge:	this equipment and the inf	formation pro	vided on this	s application
	Mail completed form to: CHATTANOOGA-HAMILTON COUNTY	Gilbert Escudero	Wert Es	cudero	-
	AIR POLLUTION CONTROL BUREAU 6125 Preservation Drive, Suite 140	Plant Manager	Name		
	Chattanooga, TN 37416-3638	2/24/2022	Title		
	This form must be completely filled out before it will be processed	2/24/2023	Date		

PROCESS EQUIPMENT APPLICATION

FORM E010 07/2000

1.	Name of Company (as shown on L	ine 1, Form E001):	Allied Metal Company		
2.	Equipment Name (as shown on Lir	e 10, Form E001);	Rotary Melting Furnace		
3.	Installation Date: 2023	4. Type o	f Process: Secondary A	luminur	n Processing
5.	Major Raw Materials Used: Scrap A	Muminum			
6.	Process Weight: 4,109.589 This is the total weight	ght of all materials introd		ounds p	per hour
7.	Control Equipment				
	Emissions Uncontrolled		Baghouse (File Form	E102)	
	☐ Wet Collecting Device (File For	m E103) [Inertial Separators (F	ile Forr	n E105)
	Electrostatic Precipitator (File F	orm E104)	Other – Specify:		
8.	Enter the control efficiency for each pollutant zeros if the emissions are uncontrolled as no		ent (for appropriate Forms E10	02, E103	
		utant	% Efficiency	-	RECEIVED
	Particulates		TBD	_	CHATT / HAMILTON CO.
	SO _x		0		445 ft 6 2022
	NO _x		0	===	MAR 1 3 2023
	CO		0	_	ATD DOLLUTION
	Hydrocarbor Other: T	BD BD	TBD	_	AIR POLLUTION CONTROL BUREAU
	Other.	BD	TBD	= 2	COMMA
9.	Emissions Summary	F			
	Enter the amount of each pollutant listed in pollutant	ounds per hour.			
	Pollutant	Uncontrolled Emis	작은 등일하는 게 기업하는 기업이		Estimated Emissions (See Formula A)
	Total Suspended Particulate	N/A	N/A	1	2.69
	PM10	N/A	N/A	1	6.11
	Sulfur Oxides	N/A	N/A	1	0.007
	Nitrogen Oxides (as NO ₂)	N/A	N/A	OR	1.18
	Other (specify)	N/A	N/A	1	N/A
	Dioxin/Furan	N/A	N/A	1	6.16E-8

(100% - Control Efficiency (%)) 100% Formula A: X Uncontrolled Emissions Estimated Emissions =

N/A

N/A

0.82

0.82

N/A

N/A

HF

HC1

10.	Environmental Impact
	Those emissions indicated in Item 9 may at times under normal operating conditions cause (check all that apply):
	Odors Eye Irritations Property Damage Health Effects
	Other nuisances outside of plant property No environmental damage
11.	Emission Point Data
	Stack Height (emission point) above ground: TBD Ft. Volume of gas discharged into atmosphere: TBD cfm Ground Elevation above sea level at stack base: TBD Ft. Gas exit temperature: TBD of Ft. Stack Diameter: TBD Ft. TBD Ft. Stack Diameter: TBD TBD of TBD
12.	Ave. Operating Time
	Daily: 8,760 hours Weekly: 7 Days Yearly: 52 Weeks
	This is to certify that I am familiar with the operations concerning this equipment and that the information provided on this application is true and complete to the best of my knowledge.
	Gilbert Escudero Scholaro Company Official
	Plant Manager Title
	February 24, 2023

CHATTANOOGA-HAMILTON COUNTY AIR POLLUTION CONTROL BUREAU 6125 Preservation Drive, Suite 140 Chattanooga, TN 37416-3740

AIR POLLUTION CONTROL EQUIPMENT DATA - BAGHOUSE

FORM E102 01/2001

Name of Company: Allied Metal Company As shown on Line 1 of Form E001	
Name of Equipment: Rotary Melting Furnace As shown on Line 9 of Form E001	
Equipment Data: Manufacturer of Baghouse: BACT Process Systems, Inc.	
Model Number: BP225-12 Cost of Baghouse: \$	2,200,000
Date of Manufacture: September 2023 Date of Installation:	October 2023
Pre-cleaning Equipment No Spark Arrestor If yes, what type (File appropri	iate form for control equipment)
Volume of gas discharged from baghouse at dry standard conditions: 70,	147 (for 6 modules) dscfm
Total cloth area of baghouse: 25,434 ft ²	
Air to cloth ratio: 3.53 Ft Min (Divide volume of gas discharged	5025-3000 100-000
	CHATT / HAMILTON CO
Pressure Drop Across Baghouse: Stated by manufacturer: 2.6 Inches of H ₂ O	MAR 1 3 20 /3
Measured (actual): 1.8 Inches of H ₂ O	AIR POLLUTION
Calculated: 1.8 $\times 3.53$ \times	Inches of H ₂ O CONTROL BUREAU
The recommended pressure drop range in inches of H ₂ O is 1.5 (minimu	um) to 8.0 (maximum).
If the measured or calculated pressure drop falls outside the recommended range, contac County Air Pollution Control Bureau.	ct the Chattanooga-Hamilton
Filter Data: Type of fabric filters used in baghouse: 16 oz. Acrylic with Fluorocarbo	on Treatment
Operating temperature: 180 °F 180 °F Manufacturer's Normal Recommended	260 °F Maximum
If the maximum operating temperature exceeds the recommended operating temperature, County Air Pollution Control Bureau.	contact the Chattanooga-Hamilton
Baghouse Components: Check all that apply.	
Flow rate instrumentation Inlet gas temperature instrumentation	on Evaporative Cooler
Dew point indicator Differential pressure instrumentation	large and the same
Heat Exchanger Transmissometer	Broken Bag Detector
Baghouse Operation: Continuous Interm	ittent Page 1 of 3

ō,	Baghouse Description: Baghouse Inlet (dirty gas): Bottom Feed Top Feed
	Exterior Filtration Tangential
	Other (Describe): Hopper
	Does the baghouse have a wear-resistant plate?
	Baghouse shape: Rectangular Cubical Cylindrical
	Other (Describe):
	Baghouse volume: TBD Ft ³
	Baghouse dimensions: TBD Ft TBD Ft
	Length Width height Baghouse shell material: 3/16" Carbon Steel
8.	Bag Cleaning: (check one) Fabric Flexing Reverse Air Cleaning
	Mechanical Shaking & Rapping Reverse Jet
	Sonic Cleaning Reverse Flow
	Collapse Cleaning Manual Cleaning
	Pulse (pressure) – Jet Cleaning
	Tuise (pressure) – Jet Cleaning
9.	
9.	Filter Configuration: Panels Multiple Tube Bag
9.	Filter Configuration:
9.	Filter Configuration: Panels Multiple Tube Bag
9.	Filter Configuration: Panels Multiple Tube Bag Circular Cross-Section Tube Other (Describe):
9.	Filter Configuration: Panels Multiple Tube Bag Circular Cross-Section Tube Other (Describe): Filter Fabric: Felted Woven Number of Compartments: Filter Area: 25,434 Ft² Number of Filters per Compartment: 225
	Filter Configuration: Panels Multiple Tube Bag Circular Cross-Section Tube Other (Describe): Filter Fabric: Felted Woven Number of Compartments: 6
	Filter Configuration: Panels Multiple Tube Bag Circular Cross-Section Tube Other (Describe): Filter Fabric: Felted Woven Number of Compartments: Filter Area: 25,434 Ft² Number of Filters per Compartment: 225 Particle Size Distribution in Microns (μ):
	Filter Configuration: Panels Multiple Tube Bag Circular Cross-Section Tube Other (Describe): Filter Fabric: Felted Woven Number of Compartments: 6 Filter Area: 25,434 Ft² Number of Filters per Compartment: 225 Particle Size Distribution in Microns (μ): Particle Type(s): TBD Moisture in gas stream: 5 % Size 0-5μ 5-10μ 10-20μ 20-44μ Greater than 44μ
10.	Filter Configuration: Panels Other (Describe): Filter Fabric: Felted Woven Number of Compartments: 6 Filter Area: 25,434 Ft² Number of Filters per Compartment: 225 Particle Size Distribution in Microns (μ): Particle Type(s): TBD Moisture in gas stream: 5 % Size 0-5μ 5-10μ 10-20μ 20-44μ Greater than 44μ % by weight TBD TBD TBD
10.	Filter Configuration: Panels Multiple Tube Bag Circular Cross-Section Tube Other (Describe): Filter Fabric: Felted Woven Number of Compartments: 6 Filter Area: 25,434 Ft² Number of Filters per Compartment: 225 Particle Size Distribution in Microns (µ): Particle Type(s): Size 0-5µ 5-10µ 10-20µ 20-44µ Greater than 44µ % by weight TBD TBD TBD TBD
10.	Filter Configuration: Panels Other (Describe): Filter Fabric: Felted Woven Number of Compartments: Filter Area: 25,434 Ft² Number of Filters per Compartment: 225 Particle Size Distribution in Microns (µ): Particle Type(s): Size 0-5µ 5-10µ 10-20µ 20-44µ Greater than 44µ % by weight TBD TBD TBD TBD TBD Dust Disposal: Automatic (screw conveyor, etc.) Manual (Describe):
10.	Filter Configuration: Panels Multiple Tube Bag Circular Cross-Section Tube Other (Describe): Filter Fabric: Felted Woven Number of Compartments: 6 Filter Area: 25,434 Ft² Number of Filters per Compartment: 225 Particle Size Distribution in Microns (µ): Particle Type(s): TBD Moisture in gas stream: 5 % Size 0-5µ 5-10µ 10-20µ 20-44µ Greater than 44µ % by weight TBD TBD TBD TBD TBD Dust Disposal: Automatic (screw conveyor, etc.) Manual (Describe): How often are hoppers emptied? Every hours Continuous

12.	Control Efficiency:					
	Manufacturer's Stated Efficiency:		99.8			%
	Required Efficiency:		TBD			%
	Operational Efficiency (performan	ce testing):	TBD			%
	Size 0-5μ % by weight N/A	5-10μ	10-20μ	20-44μ	Greater than	ι 44μ
13.		de (pull thro	ugh)	Dirty air side	(push throug	h)
	Fan Design (check one – A, B, or C);					
	Fan Type:	Blade T	уре:			
	A. Centrifugal (radial flow)	Forw	ard Curve	■ Backward	Curve	Straight
	B. Axial-flow (propeller)	Prop	eller	Tube Axia	1 🔲	Vane Axial
	Fan Properties:					
	Diameter: 44 Speed: 1,800 Volume: 40,000 Static Pressure: TBD	Inches RPM Cfm @ Inches	STP Ou	aking Horsepower et Area: tlet Area: tor Horsepower:	146 17.22 11 200	BHP Ft² Ft² HP
	Standard He	avy Duty	Submitted co Multirating	opy of Manufacturer's Tables	Yes	☐ No
	Special Construction Materials: N	ote: 2 fans ir	system			
	Bronze Alloys	Aluminu	m [Stainless Stee	1 🔲	Bisonite
	Zinc Chromate Primer	Rubber,	Phenolics, V	inyls, or Epoxy C	Covering	
		sitive Displac		Dynamic	Reciproca	J
	This is to certify that I am familiar with the operapplication is true and complete to the best of my	ntions concernii knowledge. <u>Ti</u>	g this equipmen uis form must b	nt and that the informa e completely filled ou	tion provided on t before it will be	this processed.
٢	Mail to:	ompany Offi	cial:	Selvent E.	Soudero	
	CHATTANOOGA-HAMILTON COUNTY AIR POLLUTION CONTROL BUREAU 6125 Preservation Drive Chattanooga, TN 37416	Т	itle: Plant M	Manager		
		D	ate: 2/24/2	023		
_		Do not write	below this line.			
-	Engineer Approval Permit Number					
	Special Notations:					

POLLUTION ESTIMATION FORM

FORM E106 01/2001

1. 1	Name of Company:	Allied Metal Company		
		As shown on Line 1 of Form E001		
2. E	Equipment Name:	Rotary Melting Furnace		
2 7	ima of nollytant fo	As shown on Line 9 of Form E001		
3. 7	ype of pollutant to	r which estimate is made:	rious - See attached emissions calculations	3
,				
4. P	ollution Emission l	Factor (PEF): Various - See at	tached emissions calculations	
			(Give value & units in lbs/ton, lbs/	/lb, lbs/gal, gr/fi³, etc.)
	ource of Emission	Footon Vision C. O. I		
3	ource of Elitission	ractor; various - See attached	d emissions calculations	
-				
5. T	ncontrolled Polluti	on Emiggion Roto.		100000000000000000000000000000000000000
	ncontrolled 1 officti	on Emission Rate.	Various - See attached emissions calculation	ons
	-	X	=	
1	(PEF		erating rate for this equipment appropriate units in either	(Give value & units)
		lbs/hr, to	appropriate unus in etitier ons/hr, gal/hr, or cfm)	
J				
6.				
U	ncontrolled Emissi	on Rate: Various - S	ee attached emissions calculations	Pounds emitted per hour
				1 ounds officed per flour
T/co	is is to certify that I arrect to the best of my k	m familiar with the operations conce nowledge. This form must be comple	rning this equipment and that the informa etely filled out before it is processed.	ation provided on this application is true and
М	ail to:		Company Official:	Gilbert Escudera Littlet Escudo
C	HATTANOOGA-F	HAMILTON COUNTY		
	IR POLLUTION C 25 Preservation Dr	ONTROL BUREAU		
	nattanooga, TN 374		Title:	Plant Manager
]	
			D	2 24 2022
			Date:	2-24-2023
		DO NOT	White below time the	DEATER
		DONOI	WRITE BELOW THIS LINE	RECEIVED CO.
	Engineer A	approval		
				MAD 1 9 2022
Sain C				MINUTE OF THE MINISTREE
his fo	rm corresponds to p	permit number:		MAR 1 3 2023
	rm corresponds to p	permit number:		AIR POLLUTION CONTROL BUREAU

Table C-1 Facility-Wide Emissions Allied Metal Company - Chattanooga Facility

		m [Existing Emis	Existing Emissions Sources	38					Proposed Emissions Sources	sions Source	en .					
Pollutant	Sweating	Sweating Furnace #1	Four Meltir	Four Melting Furnaces	Insignificant Activities: Propane Vaportzer and Portable Pot Furnace	Insignificant Activities: Propane Vaporizer and Portable Pot Furnace	Reverberatory Furnace	ny Furnace	Rotary F	Rotary Furnaces	Fugitive Sou Roads Dro	Fugitive Emissions Sources: Roads Dross Handling	Diesel Emer	Diesel Emergency Engine	(Pos	PTE t Control)	Major Source
	lb/hr	ton/year	lb/hr	ton/year	lb/hr	ton/year	lb/hr	ton/year	lb/hr	ton/year	lb/hr	ton/year	lb/hr	ton/year	lb/hr	ton/year	Yes/No
CO	0.11	0,46	16.0	3.99	0.077	0.339	2,31	10,10	66 0	4,33	3	1	1 93	0.48	6.32	19.70	oN.
NOx	0,18	0.79	1.57	88"9	0,134	0.585	2,75	12,02	1,18	5,15	9	1	2.20	0,55	8.01	25,98	S. S.
Filterable PM	0.85	3,71	0,77	3,38	0.002	800'0	26'6	43.68	2,69	11.80	3.83	5,61	0.11	0.03	18.22	68.21	No
PMp	0.45	1.97	0.07	0.31	0.007	0.031	13,60	99'86	6,11	26,76	0,77	1.13	0,11	0,03	21.11	89.79	°N.
PM _{2.5}	0,45	1,97	0,07	0,31	0,007	0.031	11,39	49.88	5.84	25.59	0,19	0,28	0.11	0.03	18.06	78.08	N.
SO ₂	0.0008	0.0033	0.007	0,028	9000"0	0.0024	0,02	0.07	0,01	0,03		3	19'0	0.17	0.70	0.30	o'N
VOC	0,007	0.030	90.0	0.26	0.005	0.022	0,15	99"0	90.0	0,28		t	2.20	0.55	2.49	180	o _N
Pb	6.25E-07	2,74E-06	5.42E-06	2.37E-05	4,61E-07	2.02E-06	1,37E-05	6.01E-05	5.88E-06	2.58E-05		1	ŧ	ŧ	2,61E-05	1,14E-04	No.
CO ₂	177	774	1,531	902'9	130	571	3,880	16,994	1,663	7,283	1	t	377	94	7,757.34	32.421.59	N.
CH₄	0,003	0.012	0.024	0,107	0.002	600.0	90'0	0,27	0,03	0,12	ı	1	1,53E-02	3,82E-03	0.13	0.52	S.
N ₂ O	0,0003	0,0012	0,002	0,011	0.000	0.001	0,01	0,03	00.00	0,01	1	t	3,06E-03	7.64E-04	0.01	0.05	No
Total GHG	177	774	1,531	6,707	130	571	3,880	16,994	1,663	7,283	•	4	377	94	7,757,49	32,422,16	No
CO,e	177	774	1,532	6,712	130	571	3,883	17,008	1,664	7,289	1	ı	378	94	7,765.07	32,450.09	No No
Total IIAP	2.36E-03	1.03E-02	2.05E-02	8.96E-02	1,74E-03	7.62E-03	3.11	13.63	1,67	7,30	ı	1	9,14E-03	2,29E-03	4.81	21,03	%
- 115	1	Si	ā	ā	81.8	14.	1:45	-6:35-	4-0.82	3460	i		1	ŧ	- 55-5-a-	- 86:6-	oN.
HCI		t	T.	E	1)	#5	1.45	6,35	0,82	3,60	i.	ı	ī	1	2.27	9.95	No No
Chlorine	ì	ĩ	1	ı	r	1	91.0	0.70		1				ŧ	0.16	0.70	°Z
D/F	ţ	1	1		3	1	1.09E-07	4.76E-07	6.16E-08	2.70E-07	п	0	1		1 70E-07	7.466-07	No

Table C-2 Reverberatory Melting Furnace (Proposed Emissions Unit No. 001, with Baghouse Control) Allied Metal Company - Chattanooga Facility

28 MMBtu/hr

Pollutant	Emissions Factors	Units	Reference	Emissions Factors	Ilaife	Deformance	PTE ^(a) (Un	PTE(a) (Uncontrolled)	PTE ^(a) (C	PTE ^(a) (Controlled)
	(Uncontrolled)			(Controlled)	2	Veletice	lb/hr	ton/year	lb/hr	ton/year
Vatural Gas Combustion	ibustion				- S					
00	84.00	lb/MMSCF	AP-42, Table 1.4-1 (Uncontrolled)	(1)	1		2.31	10,10	į	
NO_{x}	100.00	Ib/MMSCF	AP-42, Table 1.4-1 (Uncontrolled)	1		э	2.75	12.02	ţ	
Filterable PM	1.90	1b/MMSCF	AP-42 Table 1.4-2	ı		1	5,22E-02	0,23	;	3
PM ₁₀	7.60	Ib/MMSCF	AP-42 Table 1.4-2	E	ı	1	0.21	0.91	1	
PM _{2.5}	7.60	1b/MMSCF	AP-42 Table 1.4-2	1	1	ŧ	0.21	0.91	1	,
SO_2	09:0	lb/MMSCF	AP-42 Table 1.4-2	(1)	1	з	1,65E-02	0.072	ţ	
VOC	5.50	lb/MMSCF	AP-42 Table 1.4-2	3	1		0.15	99.0	3	1
Pb	5.00E-04	lb/MMSCF	AP-42 Table 1.4-2	£	Ε	1	1.37E-05	6.01E-05	į	:
co,	138.57	lb/MMBtu	40 CFR Part 98, Table C-1 (propane)	ŧ	10	κ	3,880	16,994	1	:
CH_4	2.20E-03	lb/MMBtu	40 CFR Part 98, Table C-2	*		(1)	6.17E-02	0.27	į	
N_2O	2.20E-04	lb/MMBtu	40 CFR Part 98, Table C-2	1	1		6.17E-03	0.03	1	
Total GHG	100	L	3	1	ı	*	3,880	16,994		ı
CO ₂ e	1	1	(b)	1)	ı	r	3,883	17.008	1	ı

Table C-2
Reverberatory Melting Furnace (Proposed Emissions Unit No. 001, with Baghouse Control)
Allied Metal Company - Chattanooga Facility

Use 32,500 tons/yr

Pollitant	Emissions Factors	Unite	Doforence	Emissions Factors	- I		PTE ^(a) (Unc	PTE(4) (Uncontrolled)	PTE ^(a) (Controlled)	introlled)
	(Uncontrolled)		TOTAL DE LA CONTROL DE LA CONT	(Controlled)		Reference	lb/hr	ton/year	lb/hr	ton/year
Refining/Chlorine Demagging	Demagging .		3/1 × 2/2 = 2/4 = 3/1	5 3 5 5 6 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6						
			AP 42 Table 12.8-2 (Uncontrolled):			AP-42 Table 12.8-2 (Baghouse): 7,248,9/16/h	4/9/6841/2	31,750 4/4		
Total PM	6.45	lb/ton	condensable PM based on engineering judgement.	3.45	lb/ton	Keining plus 25% attributed to condensable PM based on engineering judgement,	23,38	102.39	12.50	54,77
Filterable PM	4.30	lb/ton	AP-42 Table 12.8-2 (Uncontrolled): Refining	70% 1.30 tral	lb/ton	AP-42 Table 12.8-2 (Baghouse): Refining	15,59	68.26	4.71	20,64
	-		AP-42 Table 12,8-4 (Uncontrolled):			AP-42 Table 12.8-4: Refining Particle Size Distribution applied				
$ m ^{PM_{10}}$	4,75	lb/ton	Refining plus condensable PM based on engineering judgement	2.93	lb/ton	to PM factor plus condensable PM based on engineering indeement	17.22	75.41	10.62	46.51
			AP-42 Table 12.8-4 (Uncontrolled):			AP-42 Table 12.8-4: Refining Particle Size Distribution applied				
$PM_{2,5}$	4.31	lb/ton	Refining plus condensable PM based on engineering judgement	2.80	lb/ton	to PM factor plus condensable PM based on engineering indeement	15.62	68.42	10,15	44.45
Filterable PM	1,000.00	lb/ton chlorine	AP42 Table 12,8-2 (Uncontrolled): Chlorine Demagging	95% control	lb/ton chlorine	3aghouse): gging	208,33 1 6/h 104.17	912.5 t/y 456.25 (8760 h/y)	5.21	22.81
${\sf PM}_{10}$	532.00	lb/ton chlorine	AP-42 Table 12.8-4 (Uncontrolled): Chlorine Demagging	26.60	lb/ton chlorine	AP-42 Table 12.8-4: Chlorine Demagging Particle Size Distribution applied to PM factor	55.42	242.73	2.77	12.14
PM _{2.5}	00'661	lb/ton chlorinc	AP-42 Table 12.8-4 (Uncontrolled): Chlorine Demagging	06'6	lb/ton chlorine	AP-42 Table 12.8-4: Chlorine Demagging Particle Size Distribution applied to PM factor	20.73	62'06	1.03	4.52
D/F	3.00E-08	lb/ton	MACT Allowable standard from 40 CFR §63.1505(i)(3) ^(c)	a	(1	ā	1.09E-07	7 / 4.76E-07	1	Ē
X) pud	mar[9]	TAPACT Allowable standard-from 40 CFR \$63:T505(1)(4) (c) (Uncontrolled)	t	38	E	X	X	ľ	i
HCI	0.40	lb/ton	MACT Allowable standard from 40 CFR §63.1505(i)(4) ^(c) (Uncontrolled)		ı	ï	1.45	6.35	t	ï
Chlorine	0.11	q1/q1	Engineering estimate based on lb per lb of HCl emitted.	1	3	î	0.16	0.70	ä	*

Use 0.80 16 total PM/ton from 40 CFR 63, 1505 (1)(2)

Table C-2 Reverberatory Melting Furnace (Proposed Emissions Unit No. 001, with Baghouse Control) Allied Metal Company - Chattanooga Facility

(Uncontrolled)	Reference	Emissions Factors	Inite	Doforonco	PTE ^(a) (Un	PTE ^(a) (Uncontrolled)	PTE ^(a) (C	PTE(a) (Controlled)
CO NO _X		(Controlled)	3		lb/hr	ton/year	lb/hr	ton/year
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		27.7					
	***	t	ŧ	r	2.31	10.10	ı	İ
		•	1	ı	2,75	12.02	ï	ř
		*	t	/#	119.80	524.74	9.92	43,45 +
1 1 1 1 1 1 1 1 1 1 1 1	10	Ť.	ì	Ĩ	72.84	319.05	13.39	58.65
1 1 1 1 1 1 1 1 1 1 1	7.	•	1	Ē	36.56	160.13	11.18	48.97
1 1 1 1 1 1 1 1 1 1	(4		ű	100	1.09E-07	4.76E-07	1	1
1 1 1 1 1 1 1 1 1	10	•	ï	1	+	6.35	1	î
1 1 1 1 1 1 1 1	100	t	t	i	1.45	6.35	ï	t
i i i i i i i i	4	9	j	13.00	0.16	0.70	f	Ē
1 1 1 1 1 1	*	*	t	1	0.016	0.072	ä	ī
1 1 1 1 1	¥.	10	t	ı	0.15	99.0	î	ī
1 1 1 1	**	5.0	ŧ	-	1,37E-05	6.01E-05	ť	ř
1 3 1			1	1	3,880	16,994	î	1
1 1	ř	*	ř	ī	0.062	0.27	1	ã
1	1	120 C	ť	-	0.0062	0.027	t	î
	•	1	ŧ	1	3,880	16,994	1	1
CO ₂ e -	美	*	1	ı	3,883	17,008	1	1

6,23

(3) Potential emissions were calculated assuming the following rated capacities:

Fuel/Throughput	Rated Capacity	Units	
Natural Gas	28.00	MMBtu/hr	
Annual Aluminum Processed	31,750	Ton/year	4
Chlorine	9132.5	Ton/year	

- (Use 32,500 tons/yr)

(b) Carbon dioxide equivalent (CO2e) was calculated using the methodologies outlined in Table A-1 to Subpart A of 40 CFR Part 98 and the following global warming potentials (GWP):

Ь	1	25	298
GWP	CO ₂	CH₄	O ^z N

(c) HF and HC! MACT standards are used as a conservative estimate. The sources are not subject to these MACT emissions limits (only D/F).

Rotary Melting Furnace (Proposed Emissions Unit No. 002, with Baghouse Control)

Allied Metal Company - Chattanooga Facility

12 MMBtu/hr

Emissions Factors Units Reference	Units			Emissions Factors	C _{nits}	Reference	PTE ^(a) (Un	PTE ^(a) (Uncontrolled)	e l	(Controlled)
0			Se 11 12	(Controlled)			lb/hr	ton/year	lb/hr	ton/year
Natural Gas/Propane Combustion										
lb/MMSCF		AP-42, Table 1.4-1 (Unc	controlled)	1)	Ť.	TS	66.0	4.33	1	1
1b/MMSCF AP-42,		AP-42, Table 1 4-1 (Unco	ontrolled)	31	1	E	1.18	5.15	t	ř
lb/MMSCF		AP-42 Table 1.4-2		3	1	jų.	2.24E-02	0.10	1	ı
lb/MMSCF		AP-42 Table 1.4-2		3	1	î	60.0	0.39	1	ă
lb/MMSCF		AP-42 Table 1.4-	2	10	ŧ	Ŷ	60.0	0.39	1	1
0.60 lb/MMSCF AP-42 Table 1.4-2		AP-42 Table 1.4-	2	(0)	ŧ	ı	7.06E-03	3.09E-02	1	ī
5.50 lb/MMSCF AP-42 Table 1.4-2		AP-42 Table 1.4	-2	4	1		90.0	0.28	t	t
4 Ib/MMSCF		AP-42 Table 1.4-	2	3	•	27	5.88E-06	2.58E-05	1	ı
138.57 lb/MMBtu 40 CFR Part 98, Table C-1 (propane)		40 CFR Part 98, Table C-1	(propane)	*	Ī	*	1,663	7,283	3	я
lb/MMBtu		40 CFR Part 98, Table	; C-2	1	1	ì	2.64E-02	0.12	1	1
2.20E-04 lb/MMBtu 40 CFR Part 98, Table C-2		40 CFR Part 98, Table	C-2	6	Ü	Ü	2,64E-03	0.01	1	ī
3	3	(3		S.	:	345	1,663	7,283	E	E
(q)	(p)	(p)				U	1,664	7,289	(t	f
AP-42 Table 12.8-2 (Uncontrolled): Refining plus 25% attributed to condensable PM based on engineerin. judgement.	AP-42 Table 12.8-2 (Unc Refining plus 25% attr condensable PM based on judgement.		controlled): ibuted to engineering	3.45	lb/ton	AP-42 Table 12.8-2 (Baghouse): Refining plus 25% attributed to condensable PM based on engineering judgement.	13,25	58.05	7.09	31,05
4.30 lb/ton AP-42 Table 12,8-2 (Uncontrolled): Refining		AP-42 Table 12,8-2 (Uncontro Refining	lled):	1,30	lb/ton	AP 42 Table 12, 8-2 (Baghouse): Refining	8.84	38.70	2.67	11.70
AP-42 Table 12.8 4 (Uncontrolled): 4.75 Ib/ton Refining plus condensable PM based on engineering judgement		AP-42 Table 12.84 (Uncontr Refining plus condensable PM I engineering judgement	olled): based on	2,93	lb/ton	AP 42 Table 12.8-4: Refining Particle Size Distribution applied to PM factor plus condensable PM based on engineering judgement	9.76	42.75	6.02	26.37
AP-42 Table 12.8-4 (Uncontrolled): 4.31 lb/ton Refining plus condensable PM based on cngincering judgement		AP-42 Table 12.8-4 (Uncont Refining plus condensable PM engineering judgemen	rolled): based on t	2.80	lb/ton	AP 42 Table 12.8-4: Refining Particle Size Distribution applied to PM factor plus condensable PM based on engineering judgement	8.86	38.79	5.75	25.20
3.00E-08 lb/ton lb/ton 40 CFR §63.1505(i)(3) ^(c)		MACT Allowable standard 40 CFR §63.1505(i)(3)	from (c)	٠	t	ľ	6.16E-08	2,70E-07	ï	î
MACT Allowable standard-from 40 CFR -865.7505(4)(4) (*) (Uncontrolled)	\/	MACT Allowable standars 40 CFR §63.1505(+)(4) (Uncontrolled)	Ffrom (c)	1	ï	Ä	X	X	j)	ä
DAGE Allowable standard-fr. 40 CFB \$63:T565(i)(4) (6) (1) (1) (1) (1) (1) (2)	\/	MACT. Allowable standar 40 CFR \$63.1505(i)(4 (Uncontrolled)	d-from	30	h V	r.	X	X	Ü	ř
					١					

Use 0.80 16 total PW/ton from 40 CFR 63,1505 (1)(2)

Table C-3
Rotary Melting Furnace (Proposed Emissions Unit No. 002, with Baghouse Control)
Allied Metal Company - Chattanooga Facility

CO		Kererence		Units	Reference	PTE ⁽²⁾ (Un	PTE ⁽²⁾ (Uncontrolled)	PTE(a) (C	PTE(a) (Controlled)
CO NOO, NOO, PM10 PM10 PM25 DJ/F HFCI SO2 VOC Pb			(Controlled)			lb/hr	ton/year	lb/hr	ton/year
		The state of the s	and the second section in						
	1	(355		1	ti	0.99	4.33		,
	E	1	1	,	1	1.18	5.15	1	
	(1)	1	*	1		8.86	38.80	79 67	11.70
	,	1	ij	1	1	9.85	43.14	6.02	26.17
	1		1	1	ı	8.95	39.18	5.75	25.27
	40	***	1	1	3	6.16E-08	2.70E-07		
	1	**	1	ı	3	0.82	196	1	
	1		1		1	0.82			N N
	į		,	1		7.06F-03	3.09F-02		
	10	ı			9 01	90.0	0.28		1
	,	1	ı	ı		5.88E-06	2 58F-05		6 (1)
	1	1	(1)	t	ı	1.663	7 283		6 9
CH4	1	ı	Ą.	1		2 64F-02	0.12		
N ₂ O		ı	1	1	§ (1	2 64E-03	1 16F-02		
Total GHG	,	t		1		1 663	7 283	1 4	
CO ₂ e		1		1	1	1.664	7.289		1 1

(a) Potential emissions were calculated assuming the following rated capacities:

Fuel/Throughput	Rated Capacity	Units
Natural Gas	12.00	MMBtu/hr
Annual Aluminum Processed	18,000	Ton/year

(b) Carbon dioxide equivalent (CO2e) was calculated using the methodologies outlined in Table A-1 to Subpart A of 40 CFR Part 98 and the following global warming potentials (GWP):

GWP	Ь
CO ₂	1
CH₄	25
N ₂ O	298

(c) HF and HCl MACT standards are used as a conservative estimate. The sources are not subject to these MACT emissions limits (only D/F).

Table C-4

Natural Gas Combustion - Reverberatory and Rotary Furnace Hazardous Air Pollutant (HAP) Emissions

Allied Metal Company - Chattanooga Facility

Pollutant	Emissions Factor		Reference	PTE ^(c)	
Tonatant	Lilijosik	ons ractor	Reference	lb/hr	ton/yr
Benzene	2.10E-03	lb/MMSCF	(a)	8.24E-05	3.61E-04
Dichlorobenzene	1.20E-03	lb/MMSCF	(a)	4.71E-05	2.06E-04
Formaldehyde	7.50E-02	lb/MMSCF	(a)	2.94E-03	0.01
Fluoranthene	3.00E-06	lb/MMSCF	(a)	1.18E-07	5.15E-07
Fluorene	2.80E-06	lb/MMSCF	(a)	1.10E-07	4.81E-07
Hexane	1.80E+00	lb/MMSCF	(a)	0.07	0.31
Naphthalene	0.00	lb/MMSCF	(a)	2.39E-05	1.05E-04
2-Methylnaphthalene	2.40E-05	lb/MMSCF	(a)	9.41E-07	4.12E-06
Phenanthrene	0.000017	lb/MMSCF	(a)	6.67E-07	2.92E-0€
Pyrene	5.00E-06	lb/MMSCF	(a)	1.96E-07	8.59E-07
Toluene	3.40E-03	lb/MMSCF	(a)	1.33E-04	5.84E-04
Arsenic	2.00E-04	lb/MMSCF	(b)	7.84E-06	3.44E-05
Cadmium	1.10E-03	lb/MMSCF	(b)	4.31E-05	1.89E-04
Chromium III	1.40E-03	lb/MMSCF	(b)	5.49E-05	2.40E-04
Cobalt	8.40E-05	lb/MMSCF	(b)	3.29E-06	1.44E-05
Manganese	3.80E-04	lb/MMSCF	(b)	1.49E-05	6.53E-05
Mercury	2.60E-04	lb/MMSCF	(b)	1.02E-05	4.47E-05
Nickel	2.10E-03	lb/MMSCF	(b)	8.24E-05	3.61E-04
Total HAP	A SHEET WATER	MANAGE ET ET	JULIA SELIN	7.40E-02	0.32

⁽a) Emissions factor from U.S. EPA's AP-42, Table 1.4-3. Pollutant emissions factors based on method detection limits were not included.

40 MMBtu/hr

8,760 hr/yr

1,020 MMBtu/MMCF

⁽b) Emissions factor from U.S. EPA's AP-42, Table 1.4-4. Pollutant emissions factors based on method detection limits were not included.

⁽c) Emissions were calculated using the rated capacity of the reverberatory and rotary furnaces combined.

Table C-5 Fugitive Sources Allied Metal Company - Chattanooga Facility

Pollutant Emissions	Unite	Units Reference		TE ^(a)	
Factors				Onits	ton/year
		Total Co.	Dross Drop Emissions		
Filterable PM	7.55E-03 lb/ton AP-42 Table 13.2.4, Equation 1 using a moisture content of 0.25% and wind speed of 1.3 mph. Assumed PM = PM ₃₀ .		6.44E-03	0.028	
PM ₁₀	3.57E-03	lb/ton	AP-42 Table 13.2.4, Equation 1 using a moisture content of 0.25% and wind speed of 1.3 mph.		0.013
PM _{2,5}	5.41E-04	lb/ton	AP-42 Table 13.2.4, Equation 1 using a moisture content of 0.25% and wind speed of 1.3 mph.	4.61E-04	0.0020

(a) Potential emissions were calculated assuming 15% loss during processing.

Material	Throughput	Units
Dross	7,463	Ton/year

Table C-6
Roads
Allied Metal Company - Chattanooga Facility

Pollutant	Emissions Costors (a)	- Inite	.d	PTE ^(a)
	Elilisardiis racidis	OIIIIS	lb/hr	ton/year
Filterable PM	1.91	lb/VMT	3.82	5.58
PM_{10}	0.382	lb/VMT	92.0	1.12
PM _{2.5}	0.094	lb/VMT	0.19	0.27

Vehicle	Vehicle Miles Traveled	Units
Annual	5,840	VMT/yr
Hourly	2	VMT/hr

(a) U.S. EPA, AP-42 Compilation of Air Emission Factors (5th Ed.), Section 13.2.1 Paved Roads (January 2011), Equation (2),

$$E_{ext} = [k (sL)^{0.91} \times (W)^{1.02}] (1 - P/4N)$$

Units	lb/VMT			
PM25	0.00054			
PM ₁₀	0.0022			
TSP	0.011	120	7.6	22.5
Description	Particle size multiplier	Number of wet days	Road surface silt loading	Average vehicle weight
Parameters	*	Ь	$_{ m sr}$	W

Table C-7
Emergency Diesel Engine
Allied Metal Company - Chattanooga Facility

Pollutant	Emissions Factors	Units	PT	E ^(a)
Foliutant	(b)(c)	Units	lb/hr	ton/year
CO	3,50	g/kW-hour	1.93	0.48
NOx	4.00	g/kW-hour	2.20	0.55
Filterable PM	0.20	g/kW-hour	0.11	0.03
PM_{10}	0.20	g/kW-hour	0.11	0.03
$PM_{2.5}$	0.20	g/kW-hour	0.11	0.03
SO ₂	0.29	lb/MMBtu	0.67	0.17
VOC	4.00	g/kW-hour	2.20	0.55
CO_2	163.05	lb/MMBtu	376.65	94.16
CH ₄	6.61E-03	lb/MMBtu	1.53E-02	3.82E-03
N_2O	1.32E-03	lb/MMBtu	3.06E-03	7.64E-04
Total GHG	(WE	=	377	94.17
CO ₂ e		122	378	94,49
Acetaldehyde	7.67E-04	lb/MMBtu	1.77E-03	4.43E-04
Acrolein	9.25E-05	lb/MMBtu	2.14E-04	5.34E-05
Benzene	9.33E-04	lb/MMBtu	2.16E-03	5.39E-04
1,3-Butadiene	3.91E-05	lb/MMBtu	9.03E-05	2.26E-05
Formaldehyde	1.18E-03	lb/MMBtu	2.73E-03	6.81E-04
Naphthalene	8.48E-05	lb/MMBtu	1.96E-04	4.90E-05
POM	1.68E-04	lb/MMBtu	3.88E-04	9.70E-05
Toluene	4.09E-04	lb/MMBtu	9.45E-04	2.36E-04
Xylenes (mixed isomers)	2.85E-04	lb/MMBtu	6.58E-04	1.65E-04
Total HAP			9.14E-03	2.29E-03

⁽a) Potential emissions were calculated assuming the following rated capacities:

Engine Data	Rated Capacity	Units
Engine Rating	330	hp
Engine Rating	250	kW
Maximum Operating Hours	500	hour/yr
Engine Heat Input	2.31	MMBtu/hr

⁽b) Carbon dioxide equivalent (CO₂e) was calculated using the methodologies outlined in Table A-1 to Subpart A of 40 CFR Part 98 and the following global warming potentials (GWP):

GWF	
CO ₂	1
CH ₄	25
N ₂ O	298

⁽c) Emissions factors from AP-42 Section 3.3, Tables 3.3-1 and 3.3-2. Total PAH emission factor was used for POM emissions.

 $^{^{(}d)}$ NO_X, VOC, PM, and CO emissions factors based on NSPS IIII emissions limits. NO_X and VOC conservatively estimated to be equal to the NO_X + non-methane hydrocarbons emissions limit.

Table C-8
Sweating Furnace No. 1 and Associated Holding Pot #1
Allied Metal Company - Chattanooga Facility

Pollutant	Emissions Factors	Units	Reference	PTE ^(a)	
				lb/hr	ton/year
CO	84.00	lb/MMSCF	AP-42, Table 1.4-1 (Uncontrolled)	0.11	0.46
NO _X	13.00	lb/Mgal	AP-42, Table 1.5-1 LPG Combustion	0.18	0.79
Total PM			PTE based on Source Testing	0.847	3,710
Filterable PM		128	PTE based on Source Testing	0.847	3.710
PM ₁₀		275	PTE based on Source Testing	0.45	1.972
PM _{2,5}		15%	PTE based on Source Testing	0.45	1.972
SO ₂	0.60	lb/MMSCF	AP-42 Table 1.4-2	7.50E-04	3.29E-03
VOC	5.50	lb/MMSCF	AP-42 Table 1.4-2	0.01	0.03
Pb	5.00E-04	lb/MMSCF	AP-42 Table 1.4-2	6.25E-07	2.74E-06
CO ₂	138.57	lb/MMBtu	40 CFR Part 98, Table C-1 (Propane).	176.67	773.82
CH ₄	2,20E-03	lb/MMBtu	40 CFR Part 98, Table C-2	2.81E-03	0.0123
N ₂ O	2.20E-04	lb/MMBtu	40 CFR Part 98, Table C-2	2.81E-04	0.0012
Total GHG			÷.	176.67	773.83
CO ₂ e	**	#	(b)	176.82	774.49

⁽a) Potential emissions were calculated assuming the following rated capacities:

Fuel/Throughput	Rated Capacity	Units
Natural Gas/Propanc	10.95	MMcf/yr
Heat Input Rating	1.28	MMBtu/hr
Zinc Processed	2,000	lb/hr

Emissions are based on worst case fuel on a pollutant by pollutant basis. Emissions from propane combustion are worst-case for NO_x and CO₂.

(b) Carbon dioxide equivalent (CO₂e) was calculated using the methodologies outlined in Table A-1 to Subpart A of 40 CFR Part 98 and the following global warming potentials (GWP):

GWP	
CO ₂	1
CH ₄	25
N ₂ O	298

Table C-9
Four Melting Furnaces #1 - #4
Allied Metal Company - Chattanooga Facility

Pollutant	nt Emissions Factors Units Re	Reference	PTE ^(a)		
	(Oncondoned)			lb/hr	ton/year
Vatural Gas Co	mbustion/Process				
CO	84.00	lb/MMSCF	AP-42, Table 1.4-1 (Uncontrolled)	0.91	3.99
NO_X	13.00	lb/Mgal	AP-42, Table 1.5-1 LPG Combustion	1.57	6.88
Total PM				0.77	3.38
Filterable PM	Potential Emissions from the Imm	0.77	3.38		
PM_{10}	of the three kettle	0.07	0.31		
PM _{2,5}				0.07	0.31
SO_2	0.60	lb/MMSCF	AP-42 Table 1.4-2	6.50E-03	2,85E-02
VOC	5.50	lb/MMSCF	AP-42 Table 1.4-2	0.06	0.26
Pb	5.00E-04	lb/MMSCF	AP-42 Table 1.4-2	5.42E-06	2.37E-05
CO_2	138.57	lb/MMBtu	40 CFR Part 98, Table C-1 (Propane)	1,531	6,706
CH ₄	2.20E-03	lb/MMBtu	40 CFR Part 98, Table C-2	2.44E-02	1,07E-01
N ₂ O	2.20E-04	lb/MMBtu	40 CFR Part 98, Table C-2	2.44E-03	1.07E-02
Total GHG	5 2-	724		1,531	6,707
CO ₂ e	722	744	(b)	1,532	6,712

⁽a) Potential emissions were calculated assuming the following rated capacities:

Fuel/Throughput	Rated Capacity	Units
Natural Gas	94.90	MMcf/yr
Immersion Furnace	250,000	Per Batch (24-hour batch)
Each Kettle	32,000	Per Batch (12-hour batch)

⁽b) Carbon dioxide equivalent (CO₂e) was calculated using the methodologies outlined in Table A-1 to Subpart A of 40 CFR Part 98 and the following global warming potentials (GWP):

GWP	
CO ₂	1
CH ₄	25
N ₂ O	298

Table C-10

Natural Gas Combustion - Sweating and Melting Furnaces Hazardous Air Pollutant (HAP) Emissions

Allied Metal Company - Chattanooga Facility

Pollutant	Emissions Factor		Reference	PTE Rate ^(c)	
Tonutant	Lillissi	ons ractor	Kelerence	lb/hr	ton/yr
Benzene	2.10E-03	lb/MMSCF	(a)	2.54E-05	1.11E-04
Dichlorobenzene	1.20E-03	lb/MMSCF	(a)	1.45E-05	6.35E-05
Formaldehyde	7.50E-02	lb/MMSCF	(a)	9.06E-04	3.97E-03
Fluoranthene	3.00E-06	lb/MMSCF	(a)	3.63E-08	1.59E-07
Fluorene	2.80E-06	lb/MMSCF	(a)	3.38E-08	1.48E-07
Hexane	1.80E+00	lb/MMSCF	(a)	0.02	0.10
Naphthalene	0.00	lb/MMSCF	(a)	7.37E-06	3.23E-0:
2-Methylnaphthalene	2.40E-05	lb/MMSCF	(a)	2.90E-07	1.27E-0
Phenanthrene	0.000017	lb/MMSCF	(a)	2.05E-07	9.00E-0
Pyrene	5.00E-06	lb/MMSCF	(a)	6.04E-08	2.65E-0
Toluene	3.40E-03	lb/MMSCF	(a)	4.11E-05	1.80E-04
Arsenic	2.00E-04	lb/MMSCF	(b)	2.42E-06	1.06E-0:
Cadmium	1.10E-03	lb/MMSCF	(b)	1.33E-05	5.82E-0
Chromium III	1.40E-03	lb/MMSCF	(b)	1.69E-05	7.41E-0:
Cobalt	8.40E-05	lb/MMSCF	(b)	1.02E-06	4.45E-0
Manganese	3.80E-04	lb/MMSCF	(b)	4.59E-06	2.01E-05
Mercury	2.60E-04	lb/MMSCF	(b)	3.14E-06	1.38E-05
Nickel	2.10E-03	lb/MMSCF	(b)	2.54E-05	1.11E-04
Total HAP				2.28E-02	9.99E-02

⁽a) Emissions factor from U.S. EPA's AP-42, Table 1.4-3. Pollutant emissions factors based on method detection limits were not included

105.85 MMScf/yr

 $8{,}760~hr/yr$

1,020 MMBtu/MMCF

⁽b) Emissions factor from U.S. EPA's AP-42, Table 1.4-4. Pollutant emissions factors based on method detection limits were not included

⁽c) Emissions were calculated using the rated capacity of the reverberatory and rotary furnaces combined

Table C-11
Insignificant Activity Combustion Sources
Allied Metal Company - Chattanooga Facility

Pollutant	Emissions Factors (Uncontrolled)	Units	Reference	PTE ^(a)	
	(Oncontrolled)			lb/hr	ton/year
tural Gas/Propane Combusti	on				
СО	84.00	lb/MMSCF	AP-42, Table 1.4-1 (Uncontrolled)	0.077	0.339
NO _X	13.00	lb/Mgal	AP-42, Table 1.5-1 LPG Combustion	0.134	0.585
Filterable PM	1.90	lb/MMSCF	AP-42 Table 1_4-2	0.002	0.008
PM ₁₀	7.60	lb/MMSCF	AP-42 Table 1.4-2	0.007	0.031
PM _{2,5}	7,60	lb/MMSCF	AP-42 Table 1.4-2	0.007	0,031
SO ₂	0.60	lb/MMSCF	AP-42 Table 1.4-2	0.001	0.002
VOC	5.50	lb/MMSCF	AP-42 Table 1.4-2	0.005	0.022
Pb	5.00E-04	lb/MMSCF	AP-42 Table 1.4-2	4.61E-07	2,02E-06
CO ₂	138,57	lb/MMBtu	40 CFR Part 98, Table C-1 (Propane)	130,252	570,502
CH₄	2.20E-03	lb/MMBtu	40 CFR Part 98, Table C-2	2.07E-03	9.07E-03
N ₂ O	2.20E-04	lb/MMBtu	40 CFR Part 98, Table C-2	2,07E-04	9.07E-04
Total GHG		\		130,25	570.51
CO ₂ e	:==:		(b)	130.37	571,00
			And a few parts of the second		571.00
Benzene	2.10E-03	lb/MMSCF	(c)	1.94E-06	8.48E-06
Dichlorobenzene	1.20E-03	lb/MMSCF	(c)	1.11E-06	4.84E-06
Formaldehyde	7.50E-02	lb/MMSCF	(c)	6.91E-05	3.03E-04
Fluoranthene	3.00E-06	lb/MMSCF	(c)	2.76E-09	1.21E-08
Fluorene	2.80E-06	lb/MMSCF	(c)	2,58E-09	1.13E-08
Hexane	1.80E+00	lb/MMSCF	(c)	1,66E-03	7.27E-03
Naphthalene	6.10E-04	lb/MMSCF	(c)	5.62E-07	2,46E-06
2-Methylnaphthalene	2.40E-05	lb/MMSCF	(c)	2,21E-08	9.69E-08
Phenanthrene	0.000017	lb/MMSCF	(c)	1.57E-08	6.86E-08
Pyrene	5.00E-06	lb/MMSCF	(c)	4.61E-09	2.02E-08
Toluene	3.40E-03	lb/MMSCF	(c)	3.13E-06	1.37E-05
Arsenic	2.00E-04	lb/MMSCF	(d)	1.84E-07	8.07E-07
Cadmium	1.10E-03	lb/MMSCF	(d)	1.01E-06	4.44E-06
Chromium III	1.40E-03	lb/MMSCF	(d)	1.29E-06	5.65E-06
Cobalt	8.40E-05	lb/MMSCF	(d)	7.74E-08	3.39E-07
Manganese	3.80E-04	lb/MMSCF	(d)	3.50E-07	1,53E-06
Mercury	2.60E-04	lb/MMSCF	(d)	2,40E-07	1,05E-06
Nickel	2.10E-03	lb/MMSCF	(d)	1.94E-06	8.48E-06
Total HAP		THE WAY TO SERVICE THE		1.74E-03	7.62E-03

(a) Potential emissions were calculated assuming the following rated capacities:

Fuel/Throughput	Rated Capacity	Units
Total Combined	0,94	MMBtu/hr
Propane Vaporizer	0.54	MMBtu/hr
Portable Pot Furnace	0.40	MMBtu/hr

⁽b) Carbon dioxide equivalent (CO2e) was calculated using the methodologies outlined in Table A-1 to Subpart A of 40 CFR Part 98 and the following global warming potentials (GWP):

GWP	
CO ₂	1
CH ₄	25
N ₂ O	298